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1. Introduction

Bilevel programming involves two optimization problems where the constraint re-
gion of the first-level problem is implicitly determined by another second-level
(inner) optimization problem. Let f1, f2 : R

m+n → R, T ⊂ R
m, X ⊂ R

n and
C ⊂ R

m+n. Then the bilevel problem can be formulated as

min{f1(t, x) : t ∈ T } (1.1)

where x solves

min{f2(t, x) : x ∈ X, (t, x) ∈ C}. (1.2)

Due to its nested structure a bilevel programming problem, even in the linear case,
i.e, both the first and second-level problems are linear, is a nonconvex optimization
problem. Bilevel programming has received increasing attention in the literature
and some algorithms have been developed (see, e.g., [1,4–7,14,17,20] and the ref-
erences therein). Most algorithms in this field have been obtained for the bilevel
linear problem. In this case it is proved that a solution to the problem must occur at
an extreme of the polyhedron C. This result is extended in [9] for the case where
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both f1 and f2 are quasiconcave. Based on this fact, several algorithms have been
proposed for finding an optimal solution by enumerative schemes [3,17]. A survey
of the linear bilevel programming is provided in [8]. Recently, global optimization
methods such as branch-and-bound, cutting plane and outer approximation have
been proposed for solving bilevel linear problems [14,22,24,26,27,29]. An ap-
proach used in bilevel linear problems is to use Kuhn-Tucker optimality conditions
to rewrite the bilevel problem as a single level problem. The same approach may be
used for converting more general convex bilevel problems, including convex quad-
ratic bilevel problems. Branch-and-bound methods [5,7] and descent algorithms
[25,28] have been proposed for solving convex bilevel problems based on this re-
formulation. The latter methods are rather confined to computing stationary points
or local minima.

In this paper we consider the problem (1.1) and (1.2) where T , X, C are poly-
hedral convex sets and f1(t, x), f2(t, x) are convex quadratic functions. Unlike
the linear case, this problem does not necessarily attain its optimal solution at
an extreme point of C. We use the merit function technique [1,12] to formu-
late the problem as a convex program with an additional nonconvex constraint
defined by a function which is d.c with respect to the decision variable of the
first level-problem and convex with respect to the decision variable of the second
level-problem. To solve the latter problem we approximate it by convex programs
with an additional convex–concave constraint and solve the resulting problems by
a branch-and-bound procedure using an adaptive simplicial subdivision performed
in the t-space. The algorithm therefore is designed for Problem (P) where the
dimension of t is relatively small. The dimension of x may be larger. We illus-
trate our approach with an optimization problem over the equilibrium points of an
oligopolistic market problem which is equivalent to an n-person noncooperative
parametric game.

2. Equivalence Formulation

In what follows we consider Problem (1.1)–(1.2) where f1, f2 are convex quadratic
functions, and T ⊂ R

m, X ⊂ R
n, C ⊂ R

m+n are polyhedral convex sets. Suppose

C := {(t, x) : At + Bx + b � 0},

f2(t, x) := 1

2
xTQx + xT (P t + q),

where b ∈ R
�, q ∈ R

n, A ∈ R
�×m, B ∈ R

�×n, P ∈ R
n×m and Q ∈ R

n×n. We
suppose further that the polyhedron X is bounded and that Q is positive definite.
Without loss of generality we may assume that Q is symmetric, since we may
replace, if necessary, Q by 1/2(Q+QT ).

For each fixed t we define

C(t) := {x ∈ X : At + Bx + b � 0}.
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The bilevel convex problem (P) under consideration then can be formulated as

min{f1(t, x) : t ∈ T } (P )

where x solves

min

{
f2(t, x) := 1

2
xT Qx + xT (P t + q) : x ∈ C(t)

}
. (P(t))

We recall that a point (t, x) is said to be feasible for Problem (P) if t ∈ T and x is
an optimal solution to the second level-problem (P(t)).

We define a merit function for this problem by setting

g(t, x) := 1

2
xTQx+xT (P t+q)− min

v

{
1

2
vTQv+vT (P t + q) : v ∈ C(t)

}
.

(2.1)

The following lemma is immediate from the definition of g.

LEMMA 2.1. Suppose that for each fixed t the second-level problem (P(t)) admits
a solution. Then
(i) g(t, x) � 0 ∀t ∈ Rm, ∀x ∈ C(t).

(ii) g(t, x) = 0, t ∈ T , x ∈ C(t) if and only if x is an optimal solution to (P(t)).

From Lemma 2.1 it follows that Problem (P) can be formulated by the following
one-level problem

min{f1(t, x) : t ∈ T , x ∈ X, g(t, x) � 0}. (Q1)

This is a nonconvex problem, since the function g(t, x) is not convex. In order to
solve this problem we need to further analyse the function g. To this end, for each
t we take

ϕ(t) := min
v

{
1

2
vTQv + vT (P t + q) : v ∈ C(t)

}
. (2.2)

Then

g(t, x) = 1

2
xTQx + xT (P t + q)− ϕ(t). (2.3)

The following simple one-dimensional example shows that ϕ is neither convex nor
concave.

Let ϕ be given by

ϕ(t) := min
v

{v2 + (t + 1)v : v � t + 1}.
A simple calculation shows that

ϕ(t) =
{

2(t + 1)2 if t � −1,

−1

4
(t + 1)2 if t � −1.
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Clearly ϕ(t) is neither convex nor concave on R. So the function g(t, x) given
by (2.3), in general, is neither convex nor concave.

The next lemma gives an equivalent formulation for the merit function g that is
useful for deriving solution methods for Problem (P).

LEMMA 2.2. Suppose that Q is symmetric positive definite and C(t) is nonempty
and bounded for each t . Then

g(t, x) = 1

2
xTQx + xT (P t + q)+ 1

2
tT (P TQ−1P)t

+tT (P TQ−1q)+ 1

2
qT Q−1q + r(t)

(2.4)

where r(t) is a finite concave function given by

r(t) := min
λ�0

{
1

2
λT (BQ−1BT )λ− λT ((A− BQ−1P)t + b − BQ−1q)

}
.

(2.5)

Proof. Applying Kuhn-Tucker theorem to Problem (2.2) defining ϕ(t) we have

ϕ(t) = max
λ�0

{
min
v∈Rn

{
1

2
vTQv + vT (P t + q)

}
+ λT (At + Bv + b)

}

= max
λ�0

{
λT (At + b)+ min

v∈Rn

{
1

2
vTQv + vT (P t + BT λ+ q)

}}
.

Let

ψ(t) := min
v∈Rn

{
1

2
vTQv + vT (P t + BT λ+ q)

}
.

Since Q is symmetric positive definite, the latter problem has a unique solution v∗
given by

v∗ = −Q−1(P t + BT λ+ q).

A simple calculation shows that

ψ(t) = −1

2
(tT (P TQ−1P)t + λT (BQ−1BT )λ+ qTQ−1q)

−λT (BQ−1)(P t + q)− tT (P TQ−1q).

Thus

ϕ(t) = −1

2
tT (P TQ−1P)t − 1

2
qTQ−1q − tT (P TQ−1q)− r(t).
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where

r(t) = min
λ�0

{
1

2
λT (BQ−1BT )λ− λT ((A− BQ−1P)t + b − BQ−1q)

}
.

(2.6)

Thus

g(t, x) = 1

2
xTQx + xT (P t + q)+ 1

2
tT (P TQ−1P)t + tT (P TQ−1q)

+1

2
qTQ−1q + r(t).

Since ϕ(t) is finite, r(t) is finite too. �
By Lemma 2.2 and (Q1), Problem (P) can be reformulated as

f1(P ) := min f1(t, x) (P1)

subject to

t ∈ T , x ∈ X, (2.7)

At + Bx + b � 0, (2.8)

1

2
xTQx+xT (P t+q)+ 1

2
tT(P TQ−1P)t+tT(P TQ−1q)+ 1

2
qTQ−1q+r(t)�0,

(2.9)

where r(t) is the concave function given by (2.6).
Clearly, by Lemmas 2.1 and 2.2, a point (t, x) is feasible for (P1) if and only if

it is feasible for (P).

3. Solution Method

It is well recognized that the branch-and-bound technique has been applied suc-
cessfully for solving a lot number of global optimization problems. Branch-and-
bound methods differ from each other by the rules they use for bounding and
branching. In this section we propose a branch-and-bound algorithm for solv-
ing (P1) which is a nonconvex programming problem because of constraint (2.9).
We must first define bounding and branching operations in order to develop a
branch-and-bound algorithm.
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3.1. BOUNDING AND BRANCHING

We use an approximation of the nonconvex constraint (2.9) in order to compute
lower bounds for Problem (P1). Specially, we approximate the constraint (2.9) by
a convex-concave constraint using a linear approximation of the convex quadratic
function 1/2tT (P TQ−1P)t over a simplex in the t-space. Then we use a suitable
simplicial subdivision to refine the approximation. More precisely, let us consider
Problem (P1) restricted on a simplex S, i.e.,

f1(S) := minf1(t, x) (PS)

subject to

t ∈ S ∩ T , x ∈ X,

At + Bx + b � 0,
1

2
xTQx + xT (P t + q)+ 1

2
tT (P TQ−1P)t

+tT (P TQ−1q)+ 1

2
qTQ−1q + r(t) � 0.

Let u ∈ S be fixed. Define a linearization lu(t) of the function θ(t) := 1/2tT (P T

Q−1P)t at u by setting

lu(t) := uT (P TQ−1P)t − 1

2
uT (P TQ−1P)u. (3.1)

Clearly lu(t) � θ(t) for all t and lu(u) = θ(u). Then take

gu(t, x) := 1

2
xTQx+xT (P t + q)+lu(t)+tT (P TQ−1q)+ 1

2
qTQ−1q+r(t).

(3.2)

SinceQ is positive definite and r(t) is concave, this function is convex in x for each
fixed t and concave in t for each fixed x. Moreover from lu(t) � θ(t) it follows
that

g(t, x) � 0 ⇒ gu(t, x) � 0.

The following lemma can be derived from Lemma 2.3 in [21] (see also [16]).

LEMMA 3.1. Denote by V (S) the set of the vertices of S. Let

β(v) := min{f1(t, x) : t ∈ S ∩ T , x ∈ X,

At + Bx + b � 0, gu(v, x) � 0} (P(v))

and

β(S) := min{β(v) : v ∈ V (S)}.
Then β(S) � f1(S).
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We will apply this lemma with u = uS ∈ V (S). We shall refer to uS as approxim-
ation point for S. Let vS be the vertex of S corresponding to β(S) and let (tS, xS)
be an optimal solution to Problem (P(vS)). Then

β(S) = β(vS) = f1(t
S, xS), guS (v

S, xS) � 0.

Clearly, if tS = vS = uS , then (tS, xS) is feasible for (PS) because

xS ∈ X,AtS + BxS + b � 0, g(tS, xS) = guS (t
S, xS) � 0.

In this case β(S) = f1(t
S, xS) = f1(S) which means that a solution to Problem

(PS) has been found. The simplex S then can be eliminated from further considera-
tion. This suggests the use of a simplicial subdivision such that the iteration points
tS , uS and vS tend to the same point as the algorithm runs infinitely many times.
To define this subdivision, suppose that among three points tS , uS and vS there are
at least two distinct points. We then subdivide S as follows.

Let ωS be the midpoint of the longest line segment among the segments [tS, uS],
[uS, vS], [vS, tS]. Note that ωS �∈ V (S), since there are at least two distinct points
among tS , uS and vS . Then we subdivide the simplex S by a radial subdivision
[15] that is defined as follows:

Let vj (j = 1, ..., m+ 1) be the vertices of S. Then ω is uniquely expressed as

ω =
m+1∑
j=1

λjv
j ,

m+1∑
j=1

λj = 1, λj � 0 ∀j.

Let

J (ω) := {j : λj > 0}.
As usual we shall refer to ω as the subdivision point and to J (ω) as the subdivision
indices for S. Note that J (ω) has at least two elements since ω �∈ V (S). We then
subdivide S into simplices Sj , j ∈ J (ω), where the simplex Sj is obtained from S

by replacing the vertex vj by ω.
The main advantage of this simplicial subdivision is that it takes into account

information obtained from bounding operation. However, a branch-and-bound al-
gorithm utilizing a pure radial simplicial subdivision is not guaranteed to converge.
To ensure the convergence in the algorithm to be presented below we shall combine
this adaptive subdivision with the exhaustive bisection via the midpoint of a longest
edge of the partition simplex [15] as follows:

SUBDIVISION RULE 1. [1, 15]. Let N � 1 be a natural number chosen in
advance. Let Sk be the simplex to be subdivided at iteration k and let tk , uk, vk

be the iteration points obtained when computing the lower bound β(Sk) according
to Lemma 3.1. If k is a multiplier of N , then we take the subdivision point ωk as the
midpoint of a longest edge of Sk. Otherwise take ωk as the midpoint of a longest
line segment among the segments [tS, uS ], [uS, vS] [vS, tS ].
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Clearly if N = 1 then at every iteration the subdivision point is the midpoint of
a longest edge of the partition simplex. In this case we have an exhaustive simplex
bisection [15].

Computing upper bounds. The feasible region of Problem (P) is a nonconvex
set. However unlike mathematical programming problems having nonconvex feas-
ible domain, a feasible point of this problem can be obtained by solving a linearly
constrained convex quadratic problem. In fact for fixed tS we compute a solution
of the second-level problem

min
x

{f2(t
S, x) := 1

2
xTQxT + xT (P tS + q) : x ∈ X,AtS + Bx + b � 0}.

Since the function f2(t
S, .) is positive definite quadratic, this problem has a unique

solution, say yS . Hence (tS, yS) is feasible for bilevel problem (P) and therefore,
by Lemma 2.1, it is feasible for (P1). Thus f1(t

S, yS) is an upper bound for the
optimal value of (P).

The algorithm may be described in detail now that the bounding and branching
operations have been defined. As usual a feasible point (t∗, x∗) is said to be an ε-
global optimal solution to Problem (P) if it is feasible for (P) and

f1(t
∗, x∗)− f1(P ) � ε(|f1(t

∗, x∗)| + 1).

ALGORITHM
Start. Choose a natural number N � 1 and a tolerance ε � 0.
Construct an m+ 1- simplex S0 containing T (methods for constructing such a

simplex can be found, for example, in [15]).
Take u0 ∈ S0. For each v ∈ V (S0) solve the convex quadratic program

β(v) := min{f1(t, x) : t ∈ T , x ∈ X,

At + Bx + b � 0, gu(v, x) � 0} (P(v))

with u = u0, and set

β0 := min{β(v) : v ∈ V (S0)} = β(v0).

Let (t0, x0) be the obtained solution of (P(v0)). Compute an upper bound α0 by
setting

α0 := f1(t
0, y0),

where y0 is the unique solution of convex quadratic problem

min
x

{f2(t
0, x) : x ∈ X,At0 + Bx + b � 0}.

Set (t̄0, x̄0) := (t0, y0) (the currently best feasible point of (P1)) and

+0 =
{{S0} if α0 − β0 > ε(|α0| + 1),

∅ otherwise.
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Iteration k ( k = 0, 1, ...)
If +k = ∅ then terminate: (t̄k, x̄k) is an ε-global optimal solution to (P1).
If +k �= ∅, then select Sk ∈ +k such that

β(Sk) = min{β(S) : S ∈ +k}.
Let (tSk , uSk , vSk ) be the iteration points corresponding to β(Sk) computed by
Lemma 3.1 (for simplicity we shall write (tk, uk, vk) for (tSk , uSk , vSk )). Define the
subdivision ωk as the midpoint of a longest segment among the segments [tk, uk],
[uk, vk] and [vk, tk].

Subdivide Sk into subsimplices Skj (j ∈ Jk) according to the subdivision rule
1 (Jk denotes the subdivision indeces for Sk).

For each newly generated Skj compute β(Skj ) according to Lemma 3.1 with the
approximation point ukj = ωk for all j ∈ Jk to obtain a triple (tkj , ukj , vkj ). Solve
the convex programs

min
x

{f2(t
kj , x) : x ∈ X,Atkj + Bx + b � 0} (j ∈ Jk).

Let ykj (j ∈ Jk) be the solutions of these problems (hence (tkj , ykj ) is feasible for
(P1)), and α(Skj ) := f1(t

kj , ykj ), j ∈ Jk.
Update the currently best upper bound by setting

αk+1 := min{αk, α(Skj ) : j ∈ Jk}.
Let (t̄k+1, x̄k+1) be the point among (t̄k, x̄k) and (tkj , ykj ) with j ∈ Jk such that
αk+1 = f1(t̄

k+1, x̄k+1).
Set

+k+1 := {S ∈ {(+k \ Sk)
⋃
j∈Jk

Skj } : αk+1 − β(S) > ε(|αk+1| + 1)}.

Increase k by 1 and return to iteration k.

REMARK 3.1. In the algorithm, N may be an arbitrary natural number. In prac-
tice the algorithm mainly uses adaptive simplicial subdivision. The bisection via
a longest edge of the partition simplex is used only when the currently best lower
bound is very slowly improved.

REMARK 3.2. Since the subdivision of the algorithm takes place in the t-space,
the algorithm is designed for Problem (P) where the dimension of t is relatively
small. The dimension of x may be larger.

CONVERGENCE THEOREM. (i) If the algorithm terminates at iteration k, then
(t̄k, x̄k) is an ε-global optimal solution of (P).

(ii) If the algorithm runs with infinitely many iterations, then αk ↘ f1(P ),
βk ↗ f1(P ), and any cluster point of the sequence {(t̄k, x̄k)} solves (P) globally.
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Proof. (i) The algorithm terminates at iteration k if and only if +k = ∅. This
implies that αk−βk � ε(|αk|+1). Since (t̄k, x̄k) is feasible for (P), αk = f1(t̄

k, x̄k)

and βk is a lower bound for f1(P ), we deduce that (t̄k, x̄k) is an ε-global optimal
solution to (P).

(ii) Suppose now that the algorithm runs infinitely many iterations. By Propos-
ition VII.5 [15] it generates an infinite nested sequence {Sj} of simplices such that
the length of the longest segment among the segments [tj , uj ], [uj , vj ] and [vj , tj ]
tends to zero as j → ∞. This implies that tj , uj and vj tend to the same limit, say
t∗ ∈ T . Since β(vj ) is the optimal value of Problem (P(vj )), we have

βj = β(Sj ) = f1(t
j , xj ), (3.3)

xj ∈ X,Atj + Bxj + b � 0, guj (v
j , xj ) � 0. (3.4)

By the definition of gu(t, x) we have

guj (t
j , xj ) = 1

2
(xj )T Qxj + (xj )T )(P tj + q)+ (uj )T (P TQ−1P)tj

+(tj )T (P TQ−1q)+ 1

2
qTQ−1q − 1

2
(uj )T (P TQ−1P)uj + r(tj ) � 0.

(3.5)

Since X is compact, we may assume, taking a subsequence if necessary, that xj →
x∗ ∈ X. Since f1(P1) � βk+1 � βk for all k, from (3.3), (3.4) and (3.5) we obtain
in the limit that

β∗ = lim
k
βk = f1(t

∗, x∗) � f1(P1), (3.6)

x∗ ∈ X,At∗ + Bx∗ + b � 0, (3.7)

1

2
(x∗)TQx∗ + (x∗)T )(P t∗ + q)+ (u∗)T (P TQ−1P)t∗

+(t∗)T (P TQ−1q)+ 1

2
qTQ−1q − 1

2
(u∗)T (P TQ−1P)u∗ + r(t∗) � 0.

(3.8)

Since t∗ = u∗, we have

(u∗)T (P TQ−1P)t∗ − 1

2
(u∗)T (P TQ−1P)u∗ = 1

2
(u∗)T (P TQ−1P)u∗.

Then from (2.4) and (3.8) it follows that g(t∗, x∗) � 0 which together with (3.7)
shows that (t∗, x∗) is feasible for (P1), and therefore, by (3.6), it solves (P1). In
particular, x∗ solves the second-level problem (P(t∗)).

On the other hand according to the rule for computing upper bounds, yj is the
optimal solution of (P(tj )). As before we may assume that yj → y∗ as j → ∞.
Since the second-level problem (P(tj )) is convex quadratic, and tj → t∗, it follows
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from Theorem 5.3.2 in [2] that y∗ solves (P(t∗)). Since this problem has a unique
solution, we get x∗ = y∗.

Note that

βj = f1(t
j , xj ) � f1(P1) ∀j.

But since (t̄ j , x̄j ) is the currently best feasible point at iteration j , we have

f1(P1) � αj = f1(t̄
j , x̄j ) � f1(t

j , yj ) ∀j.
Letting j → ∞ and we obtain

lim
j
βj = f1(t

∗, x∗) � f1(P1) � lim
j
αj � f1(t

∗, y∗)

which together with y∗ = x∗ implies

lim
j
βj = f1(t

∗, x∗) = lim
j
αj = f1(P1).

Thus (t∗, x∗) is an global optimal solution to (P1). Note that the sequences {βk}
and {αk} are monotone, we have βk ↗ f1(P1), αk ↘ f1(P1).

Now let (t̄∗, x̄∗) be any cluster point of the sequence {(t̄k, x̄k)} . Let {(t̄ j , x̄j )}
be a subsequence that converges to (t̄∗, x̄∗). Since (t̄ j , x̄j ) is the best feasible point
at iteration j and f1(t̄

j , x̄j ) = αj , we obtain in the limit that

f1(t̄
∗, x̄∗) = lim

j
αj = f1(P ).

Noting that (t̄ j , x̄j ) is feasible for every j we deduce that (t̄∗, x̄∗) is a global op-
timal solution to (P1), and hence, by Lemma 2.1, it is a global optimal solution to
(P). The theorem is proved. �
REMARK 3.3. The validity of the algorithm and its convergence theorem remains
to hold if f1(t, x) is an arbitrary continuous convex function. In this case the
subprograms needed to solve in the algorithm remain convex but not quadratic.

A Special Case. Consider the special case where the second-level problem does
not depend on the decision variable t of the first-level problem. That is, A ≡ 0 in
constraint (2.8) so that

C(t) ≡ C0 = {x ∈ X,Bx + b � 0}
is independent of t .

By Lemma 2.1 we have

g(t, x = 1

2
xTQx + xT (P t + q)− ϕ(t),
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where

ϕ(t) = min
v

{
1

2
vTQv + vT (P t + q) : v ∈ C0)

}
. (3.9)

Since ϕ(t) now is the minimum of a family of affine functions, it is a concave
function. Thus g(t, x) is a biconvex function, i.e., convex in x for every fixed t and
convex in t for every fixed x ∈ X.

Problem (P) then can be reformulated as

min{f1(t, x) : t ∈ T }
subject to

x ∈ X,Bx + b � 0,

g(t, x) = 1

2
xTQx + xT (P t + q)− ϕ(t) � 0.

For this case in the above algorithm, instead of linearizing the convex func-
tion 1/2tT (P TQ−1P)t we can use the linearization of the convex function −ϕ(t).
Namely instead of the function lu(t) defined by (3.1) we take

lu(t) = 〈w, t − u〉 − ϕ(u), (3.1′)
where w is a gradient of the convex function −ϕ(t) at u. Then the function gu(t, x)
defined by (3.2) now takes the form

gu(t, x) = 1

2
xTQx + xT (P t + q)+ lu(t). (3.2′)

This function is convex in x for each fixed t and linear in t for each fixed x. Note
that since the convex quadratic problem (3.9) defining ϕ(t) is uniquely solvable,
the function ϕ(t) is differentiable. Moreover if v is the solution of problem (3.9)
defining ϕ(u), then it is easy to verify that w = vT P is the gradient of ϕ(t) at u.

4. Illustrative Example

We illustrate Problem (P) and the proposed algorithm with the optimization prob-
lem over the equilibrium points of an oligopolistic market linear equilibrium model
(see [18]). Suppose that there are n firms (followers) producing a goods and that
the price p of the goods depends on its quantity and on control parameters t =
(t1, ..., tm) representing, for example, the export and import duties or petrol price
on the world market. Let denote by xj the quantity of the goods producing by firm
j for j = 1, ..., n.

Following [18] we suppose that the price and the cost function are given re-
spectively by

p(t, x) = α + cT t − β

n∑
j=1

xj ,

hj (t, xj ) = (dTj t + γj )xj + δj , j = 1, ..., n,
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where γj > 0, β > 0, δj � 0, and dj ∈ Rm. Then the utility function of firm j is
defined by

uj (t, x1, ..., xn) = xjp(t, x) − hj(t, x). (4.1)

Suppose that to produce the goods the firms need � different materials. Denote by
bkj the quantity of material k that firm j needs to produce a unit of the goods, and
by bk the quantity of material k can be ordered. The constraints then are

ti ∈ Ti := {ti : 0 � ti � τi < ∞} i = 1, ..., m, (4.2)

xj ∈ Xj := {xj : 0 � xj � ξj < ∞} j = 1, ..., n, (4.3)

n∑
j=1

bkj xj � bk k = 1, ..., �, (4.4)

where τi and ξj stand for the upper bounds for the control parameter i and goods j
respectively.

As usual we call (x∗
1 , ..., x

∗
n) an equilibrium point for the oligopolistic market

problem with respect to a control parameter t if

uj (t, x
∗
1 , ..., x

∗
j−1, yj , x

∗
j+1, ..., x

∗
n)

� uj (t, x
∗
1 , ..., x

∗
j−1, x

∗
j , x

∗
j+1, ..., x

∗
n) ∀µj � yj � ξj , j = 1, ..., n

It follows from Proposition 3.2.6 in [18] that (x∗
1 , ..., x

∗
n) is equilibrium with respect

to t if and only if it is the optimal solution to the convex quadratic problem

min
x

{
f2(t, x) := 1

2
xTQxT + xT (P t + q)

}

subject to constraints (4.3) and (4.4), where Q is the n × n-symmetric positive
definite matrix given by

Q =




2β β ... β

β 2β ... β

... ... ... ...

β β ... 2β


 (4.5)

and P is the n×m matrix whose pji entry is given by

pji = dji − ci, i = 1, ..., m, j = 1, ..., n (4.6)

and

q = γ − αe ∈ Rn. (4.7)
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Let f1(t, x) denote the objective function in the first-level problem. Then the op-
timization problem over the set of the equilibrium points of the above oligopolistic
linear market problem can be formulated as the bilevel problem

min{f1(t, x) : t ∈ T = T1 × T2...× Tm}
where x solves the convex quadratic problem

min
x

{f2(t, x) := 1

2
xTQxT + xT (P t + q)}

subject to

x ∈ X := X1 ×X2....×Xn,

n∑
j=1

bkj xj � bk k = 1, ..., �

with Q, P and q being given by (4.5), (4.6) and (4.7) respectively. Clearly, in
this model the feasible domain of the second level-problem does not depend on the
decision variable t in the first level-problem. Thus, from the results in the preceding
sections, this problem can be formulated equivalently by the following one-level
optimization problem

min f1(t, x)

subject to

t ∈ T = T1 × T2...× Tm, x ∈ X,

g(t, x) := 1

2
xTQx + xT (P t + q)− ϕ(t) � 0,

where

ϕ(t) = min


1

2
vTQv + vT (P t + q) : v ∈ X,

∑
j

bkj vj � bk, k = 1, .., �


 .

NUMERICAL EXAMPLES. We illustrate the algorithm with the following ex-

amples.

EXAMPLE 1.

min{f1(t, x) := x2
1 + x2

2 + t2 − 4t : 0 � t � 2},
where xT = (x1, x2) solves the convex quadratic program

min
x

{
f2(t, x) := x2

1 + 1

2
x2

2 + x1x2 + (1 − 3t)x1 + (1 + t)x2

}
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subject to

2x1 + x2 − 2t − 1 � 0,

xT = (x1, x2) � 0.

The equivalent one-level problem is

min
t,x

{f1(t, x) := x2
1 + x2

2 + t2 − 4t}

subject to

x2
1 + 0.5x2

2 + x1x2 + (1 − 3t)x1 + (t + 1)x2 + 8.5t2 + t + 0.5 + r(t) � 0,

2x1 + x2 − 2t − 1 � 0, xT = (x1, x2) � 0, 0 � t � 2,

where

r(t) := min
λ∈R3+

{
0.5λ2

1+λ2
2+λ2

3 − λ1λ2 − λ1λ3+4tλ1 − (5t+1)λ2+(2 − t)λ3
}
.

The approximate function gu(t, x) has the form

gu(t, x) = x2
1 + 0.5x2

2 + x1x2 + (1 − 3t)x1 + (t + 1)x2

+(17u+ 1)t − 8.5u2 + 0.5 + r(t).

For computing the lower bound β(S) over each simplex S, we have to solve the
following two convex quadratic programs, one for each vertex vS of S:

β(vS) := min
t,x

{f1(t, x) := x2
1 + x2

2 + t2 − 4t},

subject to

x2
1 + 0.5x2

2 + x1x2 + (1 − 3vS)x1 + (vS + 1)x2

+(17uS + 1)v − 8.5(uS)
2 + 0.5 + r(vS) � 0,

2x1 + x2 − 2t − 1 � 0,

xT = (x1, x2) � 0, t ∈ S,

where uS can be any point in S. Then we take

β(S) := min{β(vS) : vS ∈ V (S)}.
Let (tS, xS) be an optimal solution correspoding to β(S). To compute the upper
bound α(S) we solve the convex quadratic program

min
x

{
x2

1 + 0.5x2
2 + x1x2 + (1 − 3tS)x1 + (1 + tS)x2

}



214 L.D. MUU AND N.V. QUY

subject to

2x1 + x2 − 2tS − 1 � 0,

xT = (x1, x2) � 0.

Let yS be the optimal solution of this problem Thus (tS, yS) is feasible for the
bilevel problem Then we take

α(S) := f1(t
S, yS).

Below are details for the first four iterations.

Initialization. The starting interval (one-dimensional simplex) S0 := [0, 2]; ap-
proximation point uS0 = 0. The lower bound β0 = β(S0) = −4 attains at (t0, x0) =
(2, 0, 0) and v0 = 0. The upper bound α = 2.25 attains at (t0, y0) = (2, 2.5, 0).
Thus the currently best feasible (incumbent) (t̄0, x̄0) = (t0, y0) = (2, 2.5, 0) and
+0 = {S0 = [0, 2]}.
Iteration 0. At this iteration t0 = 2, v0 = 0, u0 = 0. Thus the subdivision point
ω0 = 1 is the midpoint of the interval [u0, t0] = [0, 2]. The simplex S0 = [0, 2] is
bisected into S01 = [0, 1] and S02 = [1, 2] via ω0 = 1. The approximation point
u0 = ω0. Then β(S01) = −3. β(S02) = −4 attain at (t02, x02) = (2, 0, 0), and
v02 = 2.

The currently best upper bound α1 = −2 attains at (t1, y1) = (1, 1, 0). The
incumbent (t̄1, x̄1) = (1, 1, 0) and +1 = {S01, S02}.
Iteration 1. At this iteration S1 = S02 = [1, 2], t1 = v1 = 2, and u1 = 1. The
subdivision point ω1 thus is 1. The simplex S1 is bisected into S11 = [1, 1.5] and
S12 = [1.5, 2] via ω1 = 1. The approximation point u1 = ω1 = 1.5. Then
β(S11) = −3.7500 attains at (t11, x11) = (1.5, 0, 0), and v11 = 1. β(S12) =
−2.9137. The currently best upper bound α1 = −2. The incumbent (t̄2, x̄2) =
(t̄1, x̄1) = (1, 1, 0) and +2 = {S01, S11, S12}.
Iteration 2. At this iteration S2 = S11 = [1, 1.5], t2 = 1.5, v2 = 1, and u2 = 1.5.
The subdivision point ω2 thus is 1.25. The the simplex S2 is bisected into S21 =
[1, 1.25] and S22 = [1.25, 1.5] via ω2 = 1.25. The approximation point u2 = ω2.
Then β(S21) = −3.3640 attains at t21 = (1.25, x21) = (0.2711, 0) and v21 = 1.
β(S22) = −2.2037.

The currently upper bound α3 = −2. The incumbent (t̄3, x̄3) = (t̄1, x̄1) =
(1, 1, 0) and

+3 = {S01, S12, S21, S22}.
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The algorithm terminates after 16- iterations yielding an ε = 0.06-optimal solu-
tion (t, x1, x2) = (0.8438, 0.7657, 0) with the ε-optimal value f1(t, x1, x2) =
−2.0769.

In this example, subdivision simplices are intervals and all subdivison points are
the midpoints of the subdivision intervals. So in this case the adaptive subdivision
coincides with the exhaustive bisection. In the next example the adaptive simplicial
subdivision is not necessarily exhaustive.

EXAMPLE 2.

min{f1(t, x) :=x2
1 +x2

3 −x1x3−4x2−7t1+4t2 : tT =(t1, t2)�0, t1+t2 �1},
where xT := (x1, x2, x3) solves the quadratic program

min
x

{f2(t, x) := x2
1 + 1

2
x2

2 + 1

2
x2

3 + x1x2 + (1 − 3t1)x1 + (1 + t2)x2},
subject to

2x1 + x2 − x3 + t1 − 2t2 + 2 � 0,

xT = (x1, x2, x3) � 0.

The equivalent one-level problem then takes

min
t,x

{f1(t, x) := x2
1 + x2

3 − x1x3 − 4x2 − 7t1 + 4t2}

subject to

x2
1 + 1

2
x2

2 + 1

2
x2

3 + x1x2 + (1 − 3t1)x1 + (1 + t2)x2

+9

2
t21 + t22 + 3t1t2 + t2 + 1

2
+ r(t) � 0,

2x1 + x2 − x3 + t1 − 2t2 + 2 � 0, xT = (x1, x2, x3) � 0,

tT = (t1, t2) � 0, t1 + t2 � 1,

where

r(t) := minλ∈R4+

{
3

2
λ2

1 + 1

2
λ2

2 + λ2
3 + 1

2
λ2

4 − λ1λ2 − λ2λ3 + λ1λ4

− (4t1 − 2t2 + 1)λ1 + (3t1 + t2)λ2 − (3t1 + 2t2 + 1)λ3

}
.

The approximate function gu(t, x) takes the form

gu(t, x) = x2
1 + 1

2
x2

2 + 1

2
x2

3 + x1x2 + (1 − 3t1)x1 + (1 + t2)x2

+(9u1+3u2)t1+(3u1+2u2+1)t2− 9

2
u2

1−u2
2−3u1u2+ 1

2
+r(t).
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Table 1.

Iter Subdivision simplices

1 (0.000, 0.000); (0.000, 1.000); (1.000, 0.000)

2 (0.000, 0.000); (0.000, 1.000); (0.500, 0.500)

3 (0.000, 0.000); (0.500, 0.500); (1.000, 0.000)

4 (0.000, 0.000); (0.500, 0.500); (0.750, 0.250)

5 (0.250, 0.250); (0.500, 0.500); (0.750, 0.250)

6 (0.250, 0.250); (0.500, 0.500); (0.625, 0.375)

7 (0.437, 0.312); (0.500, 0.500); (0.625, 0.375)

8 (0.531, 0.343); (0.500, 0.500); (0.625, 0.375)

9 (0.250, 0.250); (0.500, 0.500); (0.437, 0.312)

10 (0.531, 0.343); (0.500, 0.500); (0.562, 0.437)

11 (0.437, 0.312); (0.500, 0.500); (0.531, 0.343)

12 (0.437, 0.312); (0.500, 0.500); (0.515, 0.421)

13 (0.531, 0.343); (0.562, 0.437); (0.625, 0.375)

14 (0.375, 0.375); (0.500, 0.500); (0.437, 0.312)

15 (0.531, 0.343); (0.562, 0.437); (0.593, 0.406)

16 (0.250, 0.250); (0.000, 1.000); (0.500, 0.500)

17 (0.531, 0.343); (0.515, 0.421); (0.562, 0.437)

18 (0.531, 0.343); (0.593, 0.406); (0.625, 0.375)

19 (0.531, 0.343); (0.593, 0.406); (0.609, 0.390)

For computing the lower bound β(S) over each simplex S, we have to solve the
following three convex quadratic programs, one for each vertex vS of S:

β(vS) := min
t,x

{f1(t, x) : x2
1 + x2

3 − x1x3 − 4x2 − 7t1 + 4t2}

subject to

x2
1 + 1

2
x2

2 + 1

2
x2

3 + x1x2 + (1 − 3vS1 )x1 + (1 + vS2 )x2

+(9uS1 + 3uS2 )v
S
1 + (3uS1 + 2uS2 + 1)vS2

−9

2
(uS1 )

2 − (uS2)
2 − 3uS1u

S
2 + 1

2
+ r(vS) � 0,

2x1 + x2 − x3 + t1 − 2t2 + 2 � 0,

xT = (x1, x2, x3) � 0, t ∈ S,

where uS can be an arbitrary point in S. Let (tv
S

, xv
S

) be an optimal solution of this
problem. Let (tS, xS) be an optimal solution correspoding to β(S). To compute the
upper bound α(S) we solve the following convex quadratic program where tS is
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Table 2.

Iter α β γ uS ωS

1 4.000 0.000 1 (0.000, 0.000) (0.500, 0.500)

2 0.750 0.149 2 (0.500, 0.500) (0.250, 0.250)

3 0.750 0.500 2 (0.500, 0.500) (0.750, 0.250)

4 0.750 0.500 2 (0.000, 0.000) (0.250, 0.250)

5 0.750 0.500 2 (0.500, 0.500) (0.625, 0.375)

6 0.640 0.504 3 (0.250, 0.250) (0.437, 0.312)

7 0.640 0.555 4 (0.437, 0.312) (0.531, 0.343)

8 0.640 0.578 5 (0.531, 0.343) (0.562, 0.437)

9 0.640 0.587 6 (0.437, 0.312) (0.375, 0.375)

10 0.640 0.592 6 (0.562, 0.437) (0.515, 0.421)

11 0.640 0.596 6 (0.531, 0.343) (0.515, 0.421)

12 0.640 0.596 6 (0.515, 0.421) (0.468, 0.406)

13 0.640 0.604 5 (0.562, 0.437) (0.593, 0.406)

14 0.640 0.604 6 (0.375, 0.375) (0.468, 0.406)

15 0.640 0.608 5 (0.593, 0.406) (0.546, 0.390)

16 0.640 0.610 6 (0.250, 0.250) (0.375, 0.375)

17 0.640 0.612 5 (0.515, 0.421) (0.546, 0.390)

18 0.640 0.620 5 (0.593, 0.406) (0.609, 0.390)

19 0.638 0.622 1 (0.609, 0.390) (0.570, 0.367)

20 0.638 0.625 0

fixed.

min
x

{
x2

1 + 1

2
x2

2 + 1

2
x2

3 + x1x2 + (1 − 3tS1 )x1 + (1 + tS2 )x2

}
subject to

2x1 + x2 − x3 + tS1 − 2tS2 + 2 � 0,

xT = (x1, x2, x3) � 0.

Denote by yS the unique solution of this problem. Thus (tS, yS) is a feasible for
the bilevel problem To get the upper bound for the simplex S we take

α(S) := f1(t
S, yS).

The computed results are summarized in the two tables below. The algorithm
terminated at iteration number 19 yielding an ε -global optimal solution

xT = (0.000, 0.000, 1.828), tT = (0.609, 0.391)

with ε = 0.01.
In Tables 1 and 2 we use the following headings:



218 L.D. MUU AND N.V. QUY

• iter: iteration number
• α, β: currently best upper and lower bounds
• γ : number the simplices to be restored at each iteration
• uS and ωS: approximation and subdivision points for simplex S.

5. Conclusions

We have approximated a merit function of a parameterized convex quadratic prob-
lem by saddle functions. Using this approximation we have proposed an algorithm
for finding a global optimal solution to the linearly constrained bilevel convex
quadratic problem. The global search of the proposed algorithm is performed in
the space of parameters via an adaptive simplicial subdivision. The algorithm thus
is designed for problems where the number of the parameters is relatively small.
The number of the variables of the second-level problem may be larger.
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